首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5443篇
  免费   559篇
  国内免费   526篇
化学   3353篇
晶体学   144篇
力学   213篇
综合类   22篇
数学   130篇
物理学   2666篇
  2023年   65篇
  2022年   117篇
  2021年   141篇
  2020年   191篇
  2019年   136篇
  2018年   148篇
  2017年   181篇
  2016年   222篇
  2015年   196篇
  2014年   260篇
  2013年   531篇
  2012年   327篇
  2011年   462篇
  2010年   269篇
  2009年   385篇
  2008年   372篇
  2007年   371篇
  2006年   295篇
  2005年   246篇
  2004年   245篇
  2003年   185篇
  2002年   221篇
  2001年   103篇
  2000年   103篇
  1999年   77篇
  1998年   84篇
  1997年   66篇
  1996年   74篇
  1995年   67篇
  1994年   72篇
  1993年   57篇
  1992年   43篇
  1991年   31篇
  1990年   19篇
  1989年   22篇
  1988年   27篇
  1987年   11篇
  1986年   17篇
  1985年   12篇
  1984年   14篇
  1983年   7篇
  1982年   11篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1978年   8篇
  1977年   4篇
  1976年   5篇
  1974年   3篇
  1973年   2篇
排序方式: 共有6528条查询结果,搜索用时 125 毫秒
91.
Soilbentonite slurry walls are designed to inhibit the subsurface movement of contaminants from hazardous waste sites. Although it is generally accepted that high concentrations of organic compounds will adversely affect soilbentonite slurry walls and clay liners, previous research investigating the effects of NAPLs on the conductivity of clay wall materials has been inconclusive. In this study the effects of various organics (benzene, aniline, trichloroethylene, ethylene dichloride, methylene chloride) on the effective conductivity of a typical soilbentonite slurry wall material were studied under two effective stress conditions, 200 and 52kPa. The hydraulic conductivity for the soilbentonite material permeated with water averaged 1.52×10-8cms-1. Compared to water, there was little change in conductivity when the sample was permeated with a solution containing a NAPL compound at its solubility limit, except for aniline. However, there was a one to two order of magnitude decrease in conductivity when the sample was permeated with a pure NAPL for all NAPLs tested. When the soilbentonite material was permeated with a water/NAPL/water/NAPL sequence, the conductivity decreased one to two orders of magnitude when a NAPL was introduced following water; however, when water was reintroduced after the NAPL, the conductivity increased to the initial hydraulic conductivity. The conductivity again decreased one to two orders of magnitude when the NAPL was reintroduced. This trend occurred for all NAPLs tested, and the fluid properties of the NAPL compounds alone did not account for the decrease in conductivity compared to water.  相似文献   
92.
Previous studies at Yakima Training Center (YTC), in Washington State, suggest freeze-thaw (FT) cycles can ameliorate soil compacted by tracked military vehicles [J. Terramechanics 38 (2001) 133]. However, we know little about the short-term effects of soil freezing over a single winter. We measured bulk density (BD), soil penetration resistance (SPR), and steady-state runoff rates in soil newly tracked by an Abrams tank and in uncompacted soil, before and after a single winter at YTC. We similarly measured BD, SPR and saturated hydraulic conductivity (kfs) in simulated tank tracks at another site near Lind Washington. Average BD was significantly greater in tank ruts at YTC and in simulated tracks at the Lind site than in uncompacted soil soon after tracking and did not change significantly during the winter of 1997–1998. Measurements of SPR were strongly influenced by soil moisture. When soil was moist or tracks were newly formed, SPR was significantly higher in tank ruts than in uncompacted soil from the surface to a depth of about 10–15 cm. The greatest average SPR in compacted soil was observed between 4 and 6 cm depth. We observed less difference in SPR between tank ruts and uncompacted soil near-surface at YTC as the time after trafficking increased. We observed highest SPR ratios (compacted rut:undisturbed) in fresh tracks near the surface, with lower ratios associated with increasing track age or soil depth, indicating that some recovery had occurred at YTC near-surface. However, we did not observe a similar over-winter change in SPR profiles at the Lind site. Rainfall simulator data from YTC showed higher steady-state runoff rates in tank ruts than over uncompacted soil both before and after winter. However, more time was required to reach steady-state flow in tank ruts and the proportion of runoff was slightly lower in May 1998 than in August 1997. At the Lind site, kfs was lower in newly compacted soil than in one-year old compacted soil or uncompacted soil. Our data suggest that indices of water infiltration such as steady-state runoff rates or kfs, are more sensitive indicators of soil recovery after compaction than are BD or SPR.  相似文献   
93.
The magnesium–magnesium hydride–hydrogen-system (Mg–MgH2–H2) offers, because of its combined hydrogen and heat storage capacity, the possibility to design hydride heat pumps and heat stores. For such industrial application systems based on cylindrically formed reactors filled with an active magnesium powder, the effective thermal conductivity limits the time in which the metal hydride alloy is charged and discharged with hydrogen. Determination of this transport coefficient is of fundamental importance for the optimum design of magnesium hydride reactors. The complex interrelation of the different transport mechanisms in a metal hydride packed bed and the hitherto undefined rule that the solid effective thermal conductivity behaves as a function of the hydrogen concentration, requires a reliable and simple-to-realize measuring method so as to determine the effective thermal conductivity of a magnesium hydride bed. In the present study, a report is given for the first time on the initiation of a measuring technique with oscillating change of temperature in a non-permeated packed bed of fine-grained material. The measurement of the effective thermal conductivity can ensue by tailoring the problem-specific mathematical result to the experimentally recorded temperature-time function. The effective thermal conductivity of the magnesium hydride bed varies between 2 and 8 W/(m K) in a temperature range of 523–653 K.  相似文献   
94.
95.
A new method for calculating the hysteretic relationship between hydraulic conductivity (K) and suction (S) is proposed. This method uses the experimental (KS) data of the main wetting and drying branches and predicts satisfactorily the scanning drying and wetting curves. The proposed method is applicable to those porous media where the hysteretic Θ–S relationship complies with the independent domain concept.  相似文献   
96.
《Physics letters. A》2020,384(9):126190
We propose a single-molecule electrical switches consisting of a photochromic dimethyldihydropyrene/cyclophanediene molecule sandwiched between two graphene electrodes and investigate the electronic transport by using density-functional theory and nonequilibrium Green's function methods. The “open” and “closed” isomers of the photochromic molecule are shown to have electrical switching behavior and negative differential resistance effect. Moreover, it is also found that the switching ratio between two different conductive states depends on the ambient temperature, and the device behaves as a stable electrical switch around room temperature, which is in agreement with a recent experimental study of another photochromic molecule diarylethene reported by Jia et al. (2016) [17].  相似文献   
97.
Lattice thermal conductivity can be reduced by introducing point defect, grain boundary, and nanoscale precipitates to scatter phonons of different wave-lengths, etc. Recently, the effect of electron–phonon (EP) interaction on phonon transport has attracted more and more attention, especially in heavily doped semiconductors. Here the effect of EP interaction in n-type P-doped single-crystal Si has been investigated. The lattice thermal conductivity decreases dramatically with increasing P doping. This reduction on lattice thermal conductivity cannot be explained solely considering point defect scattering. Further, the lattice thermal conductivity can be fitted well by introducing EP interaction into the modified Debye–Callaway model, which demonstrates that the EP interaction can play an important role in reducing lattice thermal conductivity of n-type P-doped single-crystal Si.  相似文献   
98.
In this article,three-dimensional mixed convection flow over an exponentially stretching sheet is investigated.Energy equation is modelled in the presence of viscous dissipation and variable thermal conductivity.Temperature of the sheet is varying exponentially and is chosen in a form that facilitates the similarity transformations to obtain self-similar equations.Resulting nonlinear ordinary differential equations are solved numerically employing the Runge-Kutta shooting method.In order to check the accuracy of the method,these equations are also solved using bvp4c built-in routine in Matlab.Both solutions are in excellent agreement.The effects of physical parameters on the dimensionless velocity field and temperature are demonstrated through various graphs.The novelty of this analysis is the self-similar solution of the threedimensional boundary layer flow in the presence of mixed convection,viscous dissipation and variable thermal conductivity.  相似文献   
99.
Abstract

Phenomenon of ferromagnetic ordering was for a long time associated exclusively with transition metal and rare-earth compounds. Nowadays this view is challenged by growing evidence that in molecular carbon-based systems the ferromagnetic alignment of spins can be observed as well. We have developed a microscopical model of a fulleride electronic subsystem taking into account triple orbital degeneracy of energy states within the configurational-operator approach. Using the Green function method the energy spectrum of the model has been calculated. Conditions for the ferromagnetic state stabilization have been determined. Static electrical conductivity and effective masses of current carriers in the system with orbitally degenerated energy band have been obtained. In the ground state and for low temperatures at different forms of unperturbed density of electronic states the concentration dependences of transport characteristics for less-then-half-filled lower quasiparticle subband have been calculated.  相似文献   
100.
ABSTRACT

We measured the electric conductivity of large (25?×?50?mm) graphene films as a function of number of layers in the range of 1–20 layers. We also calculated the energy gap for such samples using density function theory. Our results showed a conductivity slightly above that of ITO for monolayer graphene and an exponential decrease as the number of graphene layers increased. Both experimental and simulation results showed a convergence of graphene into graphite at as little as 18–20 layers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号